Surrogate-Driven Estimation of Respiratory Motion and Layers in X-Ray Fluoroscopy

نویسندگان

  • Peter Fischer
  • Thomas Pohl
  • Andreas K. Maier
  • Joachim Hornegger
چکیده

Dense motion estimation in X-ray fluoroscopy is challenging due to low soft-tissue contrast and the transparent projection of 3-D information to 2-D. Motion layers have been introduced as an intermediate representation, but so far failed to generate plausible motions because their estimation is ill-posed. To attain plausible motions, we include prior information for each motion layer in the form of a surrogate signal. In particular, we extract a respiratory signal from the images using manifold learning and use it to define a surrogate-driven motion model. The model is incorporated into an energy minimization framework with smoothness priors to enable motion estimation. Experimentally, our method estimates 48% of the 2-D motion field on XCAT phantom data. On real X-ray sequences, the target registration error of manually annotated landmarks is reduced by 52%. In addition, we qualitatively show that a meaningful separation into motion layers is achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Respiratory motion compensation by model-based catheter tracking during EP procedures

In many cases, radio-frequency catheter ablation of the pulmonary veins attached to the left atrium still involves fluoroscopic image guidance. Two-dimensional X-ray navigation may also take advantage of overlay images derived from static pre-operative 3D volumetric data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of stat...

متن کامل

Evaluation of the Quality Control Program for Diagnostic Radiography and Fluoroscopy Devices in Syria during 2005-2013

Introduction: Extensive use of diagnostic radiology is the largest contributor to total population radiation doses. Thus, appropriate equipment and safe practice are necessary for good-quality images with optimal doses. This study aimed to perform quality control (QC) audit for radiography and fluoroscopy devices owned by private sector in Syria (2005-2013) to verify compliance of performance o...

متن کامل

Automatic detection of liver tumor motion by fluoroscopy images

Background: A method to track liver tumor motion signals from fluoroscopic images without any implanted gold fiducial markers was proposed in this study to overcome the adverse effects on precise tumor irradiation caused by respiratory movement. Materials and Methods: The method was based on the following idea: (i) Before treatment, a series of fluoroscopic images corresponding to different bre...

متن کامل

Motion Estimation Model for Cardiac and Respiratory Motion Compensation

Catheter ablation is widely accepted as the best remaining option for the treatment of atrial fibrillation if drug therapy fails. Ablation procedures can be guided by 3-D overlay images projected onto live fluoroscopic X-ray images. These overlay images are generated from either MR, CT or C-Arm CT volumes. As the alignment of the overlay is often compromised by cardiac and respiratory motion, m...

متن کامل

3-D Respiratory Motion Compensation during EP Procedures by Image-Based 3-D Lasso Catheter Model Generation and Tracking

Radio-frequency catheter ablation of the pulmonary veins attached to the left atrium is usually carried out under fluoroscopy guidance. Two-dimensional X-ray navigation may involve overlay images derived from a static pre-operative 3-D volumetric data set to add anatomical details. However, respiratory motion may impair the utility of static overlay images for catheter navigation. We developed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015